TEST REPORT

<table>
<thead>
<tr>
<th>Application No.:</th>
<th>HKES1804000959PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant:</td>
<td>BIC Graphic</td>
</tr>
<tr>
<td>Address of Applicant:</td>
<td>14421 Myerlake Cirle Clearwater, FL 33760</td>
</tr>
<tr>
<td>Equipment Under Test (EUT):</td>
<td>Annular Wireless Charging Pad with Lighting</td>
</tr>
<tr>
<td>Model No.:</td>
<td>32245</td>
</tr>
<tr>
<td>PO No.:</td>
<td>2050</td>
</tr>
<tr>
<td>Shipment No.:</td>
<td>7049118</td>
</tr>
<tr>
<td>Standard(s):</td>
<td>47 CFR Part 18</td>
</tr>
<tr>
<td>Date of Receipt:</td>
<td>2018-04-27</td>
</tr>
<tr>
<td>Date of Test:</td>
<td>2018-04-27</td>
</tr>
<tr>
<td>Date of Issue:</td>
<td>2018-05-07</td>
</tr>
</tbody>
</table>

| Test Result: | Pass* |

* In the configuration tested, the EUT complied with the standards specified above.

Keny Xu
EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overhead, available on request or accessible at http://www.sgs.com/en/Terms_and_Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at [http://www.sgs.com/en/Terms_and_Conditions/Terms-and-Conditions.pdf](http://www.sgs.com/en/Terms_and_Conditions.pdf). Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company’s findings at the time of its intervention only and within the limits of Client’s instructions, if any. The Company’s sole responsibility is to its Client and this document does not constitute parties in a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.
Revision Record

<table>
<thead>
<tr>
<th>Version</th>
<th>Chapter</th>
<th>Date</th>
<th>Modifier</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td>2018-05-07</td>
<td></td>
<td>Original</td>
</tr>
</tbody>
</table>

Authorized for issue by:

<table>
<thead>
<tr>
<th>Leo Lai /Project Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Fu /Reviewer</td>
</tr>
</tbody>
</table>
Test Summary

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Method</th>
<th>Requirement</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted disturbance</td>
<td>47 CFR Part 18</td>
<td>FCC MP-5</td>
<td>Part 18.307</td>
<td>Pass</td>
</tr>
<tr>
<td>Radiated emission</td>
<td>47 CFR Part 18</td>
<td>FCC MP-5</td>
<td>Part 18.305</td>
<td>Pass</td>
</tr>
</tbody>
</table>
3 Contents

1 COVER PAGE ... 1

2 TEST SUMMARY .. 3

3 CONTENTS ... 4

4 GENERAL INFORMATION ... 5
 4.1 DETAILS OF E.U.T. .. 5
 4.2 DESCRIPTION OF SUPPORT UNITS .. 5
 4.3 MEASUREMENT UNCERTAINTY ... 5
 4.4 TEST LOCATION .. 6
 4.5 TEST FACILITY .. 6
 4.6 DEVIATION FROM STANDARDS ... 6
 4.7 ABNORMALITIES FROM STANDARD CONDITIONS ... 6

5 EQUIPMENT LIST .. 7

6 RADIO SPECTRUM MATTER TEST RESULTS ... 8
 6.1 CONDUCTED DISTURBANCE ... 8
 6.1.1 E.U.T. Operation ... 9
 6.1.2 Test Setup Diagram ... 9
 6.1.3 Measurement Procedure and Data ... 9
 6.2 RADIATED EMISSION ... 12
 6.2.1 E.U.T. Operation ... 13
 6.2.2 Test Setup Diagram ... 13
 6.2.3 Measurement Procedure and Data ... 13

7 PHOTOGRAPHS .. 17
 7.1 CONDUCTED DISTURBANCE TEST SETUP ... 17
 7.2 RADIATED EMISSION TEST SETUP .. 17
 7.3 EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS) ... 18-23
4 General Information
4.1 Details of E.U.T.

<table>
<thead>
<tr>
<th>Power supply:</th>
<th>DC 5V from USB port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable:</td>
<td>USB cable: 80cm unshielded</td>
</tr>
</tbody>
</table>

4.2 Description of Support Units

<table>
<thead>
<tr>
<th>Description</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter</td>
<td>Apple</td>
<td>A1357 W010A051</td>
<td>REF. No. SEA0500</td>
</tr>
<tr>
<td>Mobile Phone</td>
<td>Samsung</td>
<td>SM-G9500</td>
<td>R28J9140LPB</td>
</tr>
</tbody>
</table>

4.3 Measurement Uncertainty

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Measurement Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conduction Emission</td>
<td>3.45dB (9kHz to 150kHz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0dB (150kHz to 30MHz)</td>
</tr>
<tr>
<td>2</td>
<td>Radiated Emission</td>
<td>4.5dB (30MHz-1GHz)</td>
</tr>
<tr>
<td>3</td>
<td>Temperature test</td>
<td>1°C</td>
</tr>
<tr>
<td>4</td>
<td>Humidity test</td>
<td>3%</td>
</tr>
</tbody>
</table>
4.4 Test Location
All tests were performed at:
SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch
No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.
Tel: +86 755 2601 2053 Fax: +86 755 2671 0594
No tests were sub-contracted.

4.5 Test Facility
The test facility is recognized, certified, or accredited by the following organizations:
• CNAS (No. CNAS L2929)
CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.
• A2LA (Certificate No. 3816.01)
SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.
• VCCI
The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.
• FCC –Designation Number: CN1178
SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.
Designation Number: CN1178. Test Firm Registration Number: 406779.
• Industry Canada (IC)
Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards
None

4.7 Abnormalities from Standard Conditions
None
5 Equipment List

Conducted disturbance

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model No</th>
<th>Inventory No</th>
<th>Cal Date</th>
<th>Cal Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielding Room</td>
<td>ChangZhou ZhongYu</td>
<td>GB-88</td>
<td>SEM001-06</td>
<td>2017-05-10</td>
<td>2020-05-09</td>
</tr>
<tr>
<td>Measurement Software</td>
<td>AUDIX e3 V5.4.1221d</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Coaxial Cable</td>
<td>SGS</td>
<td>N/A</td>
<td>SEM024-01</td>
<td>2017-07-13</td>
<td>2018-07-12</td>
</tr>
<tr>
<td>LISN</td>
<td>Rohde & Schwarz</td>
<td>ENV216</td>
<td>SEM007-01</td>
<td>2017-09-27</td>
<td>2018-09-26</td>
</tr>
<tr>
<td>LISN</td>
<td>ETS-LINDGREN</td>
<td>3816/2</td>
<td>SEM007-02</td>
<td>2018-04-02</td>
<td>2019-04-01</td>
</tr>
<tr>
<td>EMI Test Receiver</td>
<td>Rohde & Schwarz</td>
<td>ESCI</td>
<td>SEM004-02</td>
<td>2018-04-02</td>
<td>2019-04-01</td>
</tr>
</tbody>
</table>

Radiated emission

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model No</th>
<th>Inventory No</th>
<th>Cal Date</th>
<th>Cal Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>10m Semi-Anechoic Chamber</td>
<td>SAEMC</td>
<td>FSAC1018</td>
<td>SEM001-03</td>
<td>2018-03-31</td>
<td>2021-03-30</td>
</tr>
<tr>
<td>Measurement Software</td>
<td>AUDIX e3 V8.2014-6-27</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Coaxial Cable</td>
<td>SGS</td>
<td>N/A</td>
<td>SEM029-01</td>
<td>2017-07-13</td>
<td>2018-07-12</td>
</tr>
<tr>
<td>EMI Test Receiver (9kHz-3GHz)</td>
<td>Rohde & Schwarz</td>
<td>ESR</td>
<td>SEM004-03</td>
<td>2018-04-02</td>
<td>2019-04-01</td>
</tr>
<tr>
<td>Trilg-Broadband Antenna (30MHz-1GHz)</td>
<td>Schwarzbeck</td>
<td>VULB9168</td>
<td>SEM003-18</td>
<td>2016-01-26</td>
<td>2019-01-25</td>
</tr>
<tr>
<td>Pre-amplifier</td>
<td>Sonoma Instrument Co</td>
<td>310N</td>
<td>SEM005-04</td>
<td>2018-04-13</td>
<td>2019-04-12</td>
</tr>
<tr>
<td>Active Loop Antenna</td>
<td>ETS-Lindgren</td>
<td>6502</td>
<td>SEM003-08</td>
<td>2017-08-22</td>
<td>2020-08-21</td>
</tr>
</tbody>
</table>

General used equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model No</th>
<th>Inventory No</th>
<th>Cal Date</th>
<th>Cal Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity/ Temperature Indicator</td>
<td>Shanghai Meteorological Industry Factory</td>
<td>ZJ1-2B</td>
<td>SEM002-03</td>
<td>2017-09-29</td>
<td>2018-09-28</td>
</tr>
<tr>
<td>Humidity/ Temperature Indicator</td>
<td>Shanghai Meteorological Industry Factory</td>
<td>ZJ1-2B</td>
<td>SEM002-04</td>
<td>2017-09-29</td>
<td>2018-09-28</td>
</tr>
<tr>
<td>Humidity/ Temperature Indicator</td>
<td>Mingle</td>
<td>N/A</td>
<td>SEM002-08</td>
<td>2017-09-29</td>
<td>2018-09-28</td>
</tr>
<tr>
<td>Barometer</td>
<td>Changchun Meteorological Industry Factory</td>
<td>DYM3</td>
<td>SEM002-01</td>
<td>2018-04-08</td>
<td>2019-04-07</td>
</tr>
</tbody>
</table>
6 Radio Spectrum Matter Test Results

6.1 Conducted disturbance

Test Requirement: Part 18.307
Test Method: FCC MP-5

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Operating frequency</th>
<th>RF Power generated by equipment (watts)</th>
<th>Field strength limit (µV/m)</th>
<th>Distance (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any type unless otherwise specified (miscellaneous)</td>
<td>Any non-ISM frequency</td>
<td>Below 500 500 or more</td>
<td>15 15 × SQRT(power/500)</td>
<td>300 300</td>
</tr>
</tbody>
</table>

*Field strength may not exceed 10 µV/m at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.

<table>
<thead>
<tr>
<th>Frequency band in which device operates (MHz)</th>
<th>Range of frequency measurements</th>
<th>Lowest frequency</th>
<th>Highest frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 1.705</td>
<td>Lowest frequency generated in the device, but not lower than 9 kHz</td>
<td>30 MHz.</td>
<td></td>
</tr>
<tr>
<td>1.705 to 30</td>
<td>Lowest frequency generated in the device, but not lower than 9 kHz</td>
<td>400 MHz.</td>
<td></td>
</tr>
<tr>
<td>30 to 500</td>
<td>Lowest frequency generated in the device or 25 MHz, whichever is lower</td>
<td>Tenth harmonic or 1,000 MHz, whichever is higher.</td>
<td></td>
</tr>
<tr>
<td>500 to 1,000</td>
<td>Lowest frequency generated in the device or 100 MHz, whichever is lower</td>
<td>Tenth harmonic.</td>
<td></td>
</tr>
<tr>
<td>Above 1,000</td>
<td>......do</td>
<td>Tenth harmonic or highest detectable emission.</td>
<td></td>
</tr>
</tbody>
</table>
6.1.1 E.U.T. Operation
Operating Environment:
Temperature: 25 °C Humidity: 54.2 % RH Atmospheric Pressure: 1020 mbar
Test mode: Charge mode Keep the EUT charging

6.1.2 Test Setup Diagram

6.1.3 Measurement Procedure and Data
Site: Shielding Room
Condition: Neutral
Job No.: 00959PS
Test mode: a

<table>
<thead>
<tr>
<th>Cable Freq.</th>
<th>Loss Factor</th>
<th>LISN Level</th>
<th>Read Level</th>
<th>Limit Line</th>
<th>Limit Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>dB</td>
<td>dB</td>
<td>dBuV</td>
<td>dBuV</td>
<td>dB</td>
</tr>
<tr>
<td>1</td>
<td>0.17</td>
<td>0.02</td>
<td>9.59</td>
<td>40.21</td>
<td>49.82</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.03</td>
<td>9.58</td>
<td>35.27</td>
<td>44.88</td>
</tr>
<tr>
<td>3</td>
<td>0.33</td>
<td>0.03</td>
<td>9.58</td>
<td>32.34</td>
<td>41.95</td>
</tr>
<tr>
<td>4</td>
<td>0.49</td>
<td>0.04</td>
<td>9.60</td>
<td>32.40</td>
<td>42.84</td>
</tr>
<tr>
<td>5</td>
<td>1.15</td>
<td>0.11</td>
<td>9.64</td>
<td>27.33</td>
<td>37.08</td>
</tr>
<tr>
<td>6</td>
<td>27.13</td>
<td>0.29</td>
<td>10.29</td>
<td>33.41</td>
<td>43.99</td>
</tr>
</tbody>
</table>
Mode: a; Line: Live Line

Site: Shielding Room
Condition: Line
Job No.: 00959PS
Test mode: a

<table>
<thead>
<tr>
<th>Freq (MHz)</th>
<th>Cable Loss (dB)</th>
<th>LISN Factor</th>
<th>Read Level (dBuV)</th>
<th>Limit Level (dBuV)</th>
<th>Over Limit Line (dB)</th>
<th>Over Limit Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.17</td>
<td>9.52</td>
<td>38.61</td>
<td>48.15</td>
<td>54.81</td>
<td>-6.66 Peak</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>9.51</td>
<td>35.13</td>
<td>44.67</td>
<td>51.51</td>
<td>-6.84 Peak</td>
</tr>
<tr>
<td>3</td>
<td>0.32</td>
<td>9.51</td>
<td>33.46</td>
<td>43.00</td>
<td>49.71</td>
<td>-6.71 Peak</td>
</tr>
<tr>
<td>4</td>
<td>0.47</td>
<td>9.49</td>
<td>31.06</td>
<td>42.59</td>
<td>46.49</td>
<td>-6.90 Peak</td>
</tr>
<tr>
<td>5</td>
<td>0.64</td>
<td>9.51</td>
<td>29.03</td>
<td>38.60</td>
<td>46.00</td>
<td>-7.40 Peak</td>
</tr>
<tr>
<td>6</td>
<td>7.14</td>
<td>9.59</td>
<td>27.01</td>
<td>36.78</td>
<td>50.00</td>
<td>-13.22 Peak</td>
</tr>
</tbody>
</table>
6.2 Radiated emission

Test Requirement: Part 18.305
Test Method: FCC MP-5
Measurement Distance: 10m

Disturbance voltage limits for class A group 2 equipment

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Rated power of <= 75kVA</th>
<th>Rated power of > 75kVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>Quasi-peak (dB(uV))</td>
<td>Average (dB(uV))</td>
</tr>
<tr>
<td>0.15-0.50</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>120</td>
</tr>
<tr>
<td>0.50-5</td>
<td>86</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>115</td>
</tr>
<tr>
<td>5-30</td>
<td>90 decreasing linearly with logarithm of frequency to 73</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>80 decreasing linearly with logarithm of frequency to 60</td>
<td>105</td>
</tr>
</tbody>
</table>
6.2.1 E.U.T. Operation

Operating Environment:
Temperature: 25 °C Humidity: 51 % RH Atmospheric Pressure: 1020 mbar
Test mode: a:Charge mode Keep the EUT charging

6.2.2 Test Setup Diagram

6.2.3 Measurement Procedure and Data
9kHz to 150kHz

![Graph showing frequency response with various levels and conditions]

Condition: 10m
Job No.: 00959PS
Test Mode: a

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Cable Loss (dB)</th>
<th>Antenna Factor</th>
<th>Preamp Factor</th>
<th>Read Level (dB)</th>
<th>Limit Level (dB)</th>
<th>Line Limit (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.29</td>
<td>19.27</td>
<td>0.00</td>
<td>22.93</td>
<td>42.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53.06</td>
<td>-10.57</td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
<td>0.14</td>
<td>17.78</td>
<td>0.00</td>
<td>30.59</td>
<td>43.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53.06</td>
<td>-9.55</td>
</tr>
<tr>
<td>3 pp</td>
<td>0.11</td>
<td>0.05</td>
<td>11.91</td>
<td>0.00</td>
<td>32.03</td>
<td>43.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53.06</td>
<td>-9.07</td>
</tr>
</tbody>
</table>
150kHz to 30MHz

Condition: 10m
Job No. : 00959PS
Test Mode: a

<table>
<thead>
<tr>
<th>Freq</th>
<th>Cable Loss Factor</th>
<th>Ant Preamp Factor</th>
<th>Read Level</th>
<th>Limit Level</th>
<th>Limit Line</th>
<th>Over Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>dB</td>
<td>dB/m</td>
<td>dB</td>
<td>dBuV</td>
<td>dBuV/m</td>
<td>dBuV/m</td>
</tr>
<tr>
<td>1 P</td>
<td>0.16</td>
<td>0.07</td>
<td>11.72</td>
<td>0.00</td>
<td>36.38</td>
<td>48.17</td>
</tr>
<tr>
<td>2</td>
<td>1.67</td>
<td>0.31</td>
<td>17.07</td>
<td>0.00</td>
<td>16.30</td>
<td>28.68</td>
</tr>
<tr>
<td>3</td>
<td>28.60</td>
<td>0.77</td>
<td>8.06</td>
<td>0.00</td>
<td>3.49</td>
<td>12.32</td>
</tr>
</tbody>
</table>
The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

\[\frac{L_{300}}{L_{10}} = D_{10}/D_{300} \]

Note:
- \(L_{300} \): Level @ 300m distance. Unit: \(\mu V/m \);
- \(L_{10} \): Level @ 10m distance. Unit: \(\mu V/m \);
- \(D_{300} \): 300m distance. Unit: m
- \(D_{10} \): 10m distance. Unit: m

The level at 300m test distance is below:

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Read Level @ 10m (dBuV/m)</th>
<th>Read Level @ 300m (dBuV/m)</th>
<th>Limit @ 300m (dBuV/m)</th>
<th>Margin (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.012</td>
<td>42.29</td>
<td>-16.79</td>
<td>23.52</td>
<td>-40.32</td>
</tr>
<tr>
<td>0.043</td>
<td>43.51</td>
<td>-15.57</td>
<td>23.52</td>
<td>-39.10</td>
</tr>
<tr>
<td>0.118</td>
<td>43.99</td>
<td>-15.09</td>
<td>23.52</td>
<td>-38.62</td>
</tr>
<tr>
<td>0.161</td>
<td>48.17</td>
<td>-10.91</td>
<td>23.52</td>
<td>-34.44</td>
</tr>
<tr>
<td>1.670</td>
<td>28.68</td>
<td>-30.40</td>
<td>23.52</td>
<td>-53.93</td>
</tr>
<tr>
<td>28.600</td>
<td>12.32</td>
<td>-46.76</td>
<td>23.52</td>
<td>-70.29</td>
</tr>
</tbody>
</table>
7 Photographs

7.1 Conducted disturbance Test Setup

7.2 Radiated emission Test Setup
7.3 EUT Constructional Details (EUT Photos)

![EUT Photos](image_url)
- End of the Report -